1. Complete the following table

	Formula	Name
1	SeBr ₄	
2	NH ₄ CI	
3	Na ₂ O ₂	
4	$K_4[Fe(CN)_6]$	
5	$Na_2S_2O_3$	
6	ноос—соон	
7	СН ₃ СН ₂ СН—СН=СН ₂	
	CH ₂ CH ₃	
8	CH ₃	
	CH ₃	
9	₩g8r	
10		
11		Trihydroboric acid
12		Calcium imide
13		Sodium peroxodisulfate
14		Ferrous thiocyanate

15	Silicon carbide
16	4,4-dichor-2-pentanone
17	Butanoic acid methyl ester
18	Phenanthrene
19	Diethyl ether
20	Hepta-1,3,5-trien

2. Complete the right-hand sides of the equations, calculate them and name the products for the second equation:

$$Al_2(SO_4)_3$$
 + NH_3 + H_2O \rightarrow $H_3C-CHBr-CH_3$ + Nal \rightarrow

3. Number the equation

$$\text{K}_2\text{Cr}_2\text{O}_7 \ + \ \text{FeSO}_4 \ + \ \text{H}_2\text{SO}_4 \ \Rightarrow \ \text{Fe}_2(\text{SO}_4)_3 \ + \ \text{Cr}_2(\text{SO}_4)_3 \ + \ \text{K}_2\text{SO}_4 \ + \ \text{H}_2\text{O}$$

4. Finish the equation:

$$F_2$$
 + NaCl \rightarrow NaF +

5. H_3O^+ ion concentration in an aqueous solution is 10^{-3} . What is the OH^- ion concentration, and what is the pH of the solution?
6. Calculate the mass fraction and mass percent of the sodium hydroxide solution formed by adding 10g of solid NaOH to 150g of a 10% NaOH solution.
7. Calculate the substance concentration of the sodium chloride solution (in units of mol.l ⁻¹), which was prepared by dissolving 5 g of NaCl in 150 ml of water (neglecting the change in volume due to the addition of the solid phase). The molar mass of M(NaCl) = 58,443g.mol ⁻¹ .
8. Chemical bond σ : a) it arises outside the junction of nuclei by the overlap of orbitals
s-s, s-p a s-d.
b) it arises outside the junction of nuclei by the overlap of orbitals
p-p, p-d a d-d.
c) it arises at the junction of nuclei by the overlap of orbitals
s-s, s-p a p-p.
d) forms a triple bond together with another σ bond and a bond.
 9. Lewis acid is: a) is any nucleophilic molecule, atom or ion. b) is any electrophilic molecule, atom or ion capable of accepting a bonding electron pair. c) is any electrophilic molecule, atom or ion capable of donating a non-bonding electron pair. d) appears as a molecule, atom or ion with an incomplete octet or a particle with an energetically available vacant orbital d.

10. Addition means:

- a) a reaction in which the π bonds between carbon atoms or a carbon atom and another element are destroyed.
- b) a reaction in which two or more parts are split off from an organic molecule to form a multiple bond or cycle.
- c) a reaction in which other atoms or groups of atoms replace atoms or groups of atoms.
- d) a reaction in which atoms or groups of atoms move from one place in the molecule to another.
- 11. State the oxidation states of oxygen for the given ions:
 - a) oxide,
 - b) peroxide,
 - c) superoxide.
- 12. The simplest freon (dichlorodifluoromethane) can be written structurally:

Note: the molecule is not planar (it forms a tetrahedron).

Choose the correct statement:

$$Cl$$
 C
 F

- a) there is a difference between the two methods of notation they are geometric isomers
- b) in both cases, the absolute identical molecule is expressed

13. Chirality is:

- a) the ability to bend the plane of unpolarized light.
- b) the ability to turn the plane of polarized light only to the left. c) the ability to turn the plane of polarized light only to the right.
- d) the ability to turn the plane of polarized light to the right or to the left.